Source code for vistock.plotly.bull_draw

"""
Visualize a BullRun and Drawdown for a stock.
"""
__software__ = "BullRun & Drawdown"
__version__ = "1.3"
__author__ = "York <york.jong@gmail.com>"
__date__ = "2024/07/21 (initial version) ~ 2024/08/20 (last revision)"

__all__ = [ 'plot' ]

import yfinance as yf
import pandas as pd
import plotly.graph_objs as go
from plotly.subplots import make_subplots

from .. import tw
from .. import file_utils
from . import fig_utils as futil
from ..bull_draw_utils import calculate_bull_run, calculate_drawdown
from ..utils import MarketColorStyle, decide_market_color_style


[docs] def plot(symbol='TSLA', period='1y', interval='1d', ma_nitems=(5, 10, 20, 50, 150), vma_nitems=50, market_color_style=MarketColorStyle.AUTO, template='plotly', hides_nontrading=True, out_dir='out'): """Plot a stock figure that consists of two subplots: a price subplot and a volume subplot. The price subplot includes price lines, bull-run bar cahrt, and drawdown bar chart, while the volume subplot includes a volume histogram and a volume moving average line. Parameters ---------- symbol: str the stock symbol. period: str, optional the period data to download. Valid values are 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max. Default is '1y' - d -- days - mo -- monthes - y -- years - ytd -- year to date - max -- all data interval: str, optional the interval of an OHLC item. Valid values are 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo. Default is '1d' - m -- minutes - h -- hours - wk -- weeks - mo -- monthes Intraday data cannot extend last 60 days: - 1m - max 7 days within last 30 days - up to 90m - max 60 days - 60m, 1h - max 730 days (yes 1h is technically < 90m but this what Yahoo does) ma_nitems: sequence of int a sequence to list the number of data items to calclate moving averges. vma_nitems: int the number of data items to calculate the volume moving average. market_color_style: MarketColorStyle, optional Color style for market data visualization. Default is MarketColorStyle.AUTO. template: str, optional: The Plotly template to use for styling the chart. Defaults to 'plotly'. Available templates include: - 'plotly': Default Plotly template with interactive plots. - 'plotly_white': Light theme with a white background. - 'plotly_dark': Dark theme for the chart background. - 'ggplot2': Style similar to ggplot2 from R. - 'seaborn': Style similar to Seaborn in Python. - 'simple_white': Minimal white style with no gridlines. - 'presentation': Designed for presentations with a clean look. - 'xgridoff': Plot with x-axis gridlines turned off. - 'ygridoff': Plot with y-axis gridlines turned off. For more details on templates, refer to Plotly's official documentation. hides_nontrading: bool, optional Whether to hide non-trading periods. Default is True. out_dir: str, optional Directory to save the output HTML file. Default is 'out'. """ # Download stock data ticker = tw.as_yfinance(symbol) df = yf.Ticker(ticker).history(period=period, interval=interval) fig = make_subplots( rows=2, cols=1, row_heights=[0.7, 0.3], #shared_xaxes=True, vertical_spacing=0.03, specs=[ [{"secondary_y": True}], # row 1, col 1 [{"secondary_y": False}] # row 2, col 1 ], figure=go.Figure(layout=go.Layout(height=720)) ) # Add moving averages to the figure price = go.Scatter(x=df.index, y=df['Close'], name=f'Price', line=dict(color='brown', width=2), yaxis='y2' ) fig.add_trace(price) # Automaticly decide market color style mc_style = decide_market_color_style(ticker, market_color_style) # Add bull-run trace to the figure cl = get_bullrun_color(mc_style) df['BullRun'] = calculate_bull_run(df) drawdown = go.Bar(x=df.index, y=df['BullRun'], name='BullRun', marker_color=cl, opacity=0.5) fig.add_trace(drawdown) # Add drawdown trace to the figure cl = get_drawdown_color(mc_style) df['Drawdown'] = calculate_drawdown(df) drawdown = go.Bar(x=df.index, y=df['Drawdown'], name='Drawdown', marker_color=cl, opacity=0.5) fig.add_trace(drawdown) # Get volume colors cl = futil.get_volume_colors(mc_style) # Add close-low diff trace to the figure df['Close-Low'] = (df['Close'] - df['Low']) / df['Close'] diff = go.Bar(x=df.index, y=df['Close-Low'], name='Close-Low', marker_color=cl['up'], opacity=0.5) fig.add_trace(diff) # Add close-high diff trace to the figure df['Close-High'] = (df['Close'] - df['High']) / df['Close'] diff = go.Bar(x=df.index, y=df['Close-High'], name='Close-High', marker_color=cl['down'], opacity=0.5) fig.add_trace(diff) fig.update_layout(barmode='overlay') # Add volume trace to 2nd row colors = [cl['up'] if c >= o else cl['down'] for o, c in zip(df['Open'], df['Close'])] volume = go.Bar(x=df.index, y=df['Volume'], name='Volume', marker_color=colors, opacity=0.5) fig.add_trace(volume, row=2, col=1) # Add moving average volume to 2nd row df['vma50'] = df['Volume'].rolling(window=50).mean() vma50 = go.Scatter(x=df.index, y=df['vma50'], name='VMA 50', line=dict(color='purple', width=2)) fig.add_trace(vma50, row=2, col=1) # Convert datetime index to string format suitable for display if interval.endswith('m') or interval.endswith('h'): df.index = df.index.strftime('%Y-%m-%d %H:%M') else: df.index = df.index.strftime('%Y-%m-%d') # Update layout fig.update_layout( title=f'{symbol} - {interval} ({df.index[0]} to {df.index[-1]})', title_x=0.5, title_y=.9, xaxis=dict(anchor='free'), yaxis=dict(title='BullRun and Drawdown', side='left', anchor='x3'), yaxis2=dict(title='Price', side='right', anchor='x3'), yaxis3=dict(title='Volume', side='right'), legend=dict(yanchor='middle', y=0.5, xanchor="left", x=0.01), xaxis_rangeslider_visible=False, xaxis2_rangeslider_visible=False, template=template, ) if hides_nontrading: futil.hide_nontrading_periods(fig, df, interval) # For Crosshair cursor futil.add_crosshair_cursor(fig) futil.add_hovermode_menu(fig) # Show the figure fig.show() # Write the figure to an HTML file out_dir = file_utils.make_dir(out_dir) fn = file_utils.gen_fn_info(symbol, interval, df.index[-1], __file__) fig.write_html(f'{out_dir}/{fn}.html')
def get_bullrun_color(market_color_style=MarketColorStyle.WESTERN): if market_color_style == MarketColorStyle.WESTERN: return 'blue' else: return 'orange' def get_drawdown_color(market_color_style=MarketColorStyle.WESTERN): if market_color_style == MarketColorStyle.WESTERN: return 'orange' else: return 'blue' if __name__ == '__main__': plot('TSLA')