Source code for vistock.plotly.ibd_rs

"""
ibd_rs.py - Provides IBD-compatible stock charts.

This module provides functionality for analyzing and plotting stock data
with a focus on Investor's Business Daily (IBD) Relative Strength metrics.
It includes capabilities for generating candlestick charts with moving averages,
volume analysis, and relative strength comparisons.

The main function 'plot' allows users to visualize stock performance
over various time periods and intervals, with customizable reference indexes
and styling options.

Usage:
::

    from vistock.plotly import ibd_rs
    ibd_rs.plot('TSLA', period='1y', interval='1d')
"""
__software__ = "IBD-compatible stock chart"
__version__ = "2.2"
__author__ = "York <york.jong@gmail.com>"
__date__ = "2024/08/16 (initial version) ~ 2024/10/10 (last revision)"

__all__ = ['plot']

import pandas as pd
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots

from .. import tw
from .. import file_utils
from . import fig_utils as futil
from ..utils import MarketColorStyle, decide_market_color_style
from ..ibd import relative_strength, relative_strength_3m
from .. import stock_indices as si


[docs] def plot(symbol, period='2y', interval='1d', ticker_ref=None, rs_window='12mo', market_color_style=MarketColorStyle.AUTO, template='plotly', hides_nontrading=True, out_dir='out'): """Generate and display a stock analysis plot with candlestick charts, moving averages, volume analysis, and Relative Strength (RS) metrics. Creates an interactive Plotly figure showing: - Candlestick chart of the stock with moving averages. - Relative Strength (RS) indicator in a separate subplot. - Volume and volume moving average in another subplot. The figure is saved as an HTML file in the specified output directory. Parameters ---------- symbol: str The stock symbol to analyze. period: str the period data to download. . Defaults to '2y'. Valid values are 6mo, 1y, 2y, 5y, 10y, ytd, max. - mo -- monthes - y -- years - ytd -- year to date - max -- all data interval: str The interval for data points ('1d' for daily, '1wk' for weekly; default is '1d'). ticker_ref: str, optional The ticker symbol of the reference index. If None, defaults to S&P 500 ('^GSPC') or Taiwan Weighted Index ('^TWII') if the first stock is a Taiwan stock. rs_window: str, optional Specify the time window ('3mo' or '12mo') for Relative Strength calculation. Default to '12mo'. market_color_style: MarketColorStyle, optional Color style for market data visualization. Default is MarketColorStyle.AUTO. template: str, optional: The Plotly template to use for styling the chart. Defaults to 'plotly'. Available templates include: - 'plotly': Default Plotly template with interactive plots. - 'plotly_white': Light theme with a white background. - 'plotly_dark': Dark theme for the chart background. - 'ggplot2': Style similar to ggplot2 from R. - 'seaborn': Style similar to Seaborn in Python. - 'simple_white': Minimal white style with no gridlines. - 'presentation': Designed for presentations with a clean look. - 'xgridoff': Plot with x-axis gridlines turned off. - 'ygridoff': Plot with y-axis gridlines turned off. For more details on templates, refer to Plotly's official documentation. hides_nontrading: bool, optional Whether to hide non-trading periods. Default is True. out_dir: str, optional Directory to save the output HTML file. Default is 'out'. Raises ------ ValueError If an unsupported interval is provided. """ ticker = tw.as_yfinance(symbol) if not ticker_ref: ticker_ref = '^GSPC' # S&P 500 Index if tw.is_taiwan_stock(ticker): ticker_ref = '^TWII' # Taiwan Weighted Index # Download data df = yf.download([ticker_ref, ticker], period=period, interval=interval) df_ref = df.xs(ticker_ref, level='Ticker', axis=1) df = df.xs(ticker, level='Ticker', axis=1) # Select the appropriate relative strength function based on the rs_window rs_func = { '3mo': relative_strength_3m, '12mo': relative_strength, }[rs_window] # Calculate Relative Strength (RS) df['RS'] = rs_func(df['Close'], df_ref['Close'], interval) df[f'RS {ticker_ref}'] = 100 # Set moving average windows based on the interval try: ma_wins = { '1d': [50, 200], '1wk': [10, 40]}[interval] vma_win = { '1d': 50, '1wk': 10}[interval] except KeyError: raise ValueError("Invalid interval. " "Must be '1d', or '1wk'.") # Calculate price moving average for n in ma_wins: df[f'MA {n}'] = df['Close'].rolling(window=n, min_periods=1).mean() # Calculate volume moving averaage df[f'VMA {vma_win}'] = df['Volume'].rolling(window=vma_win, min_periods=1).mean() # Create subplots fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.5, 0.3, 0.2], figure=go.Figure(layout=go.Layout(height=1000))) # Add traces mc_style = decide_market_color_style(ticker, market_color_style) mc_colors = futil.get_candlestick_colors(mc_style) cl = futil.get_volume_colors(mc_style) vol_colors = [cl['up'] if c >= o else cl['down'] for o, c in zip(df['Open'], df['Close'])] main_row, rs_row, vol_row = 1, 2, 3 traces = [ # Main subplot (go.Candlestick(x=df.index, open=df['Open'], high=df['High'], low=df['Low'], close=df['Close'], name='Candle', **mc_colors), main_row), *[(go.Scatter(x=df.index, y=df[f'MA {n}'], mode='lines', name=f'MA {n}'), main_row) for n in ma_wins], # RS subplot (go.Scatter(x=df.index, y=df['RS'], mode='lines', name='RS', line=dict(color='green', width=2)), rs_row), (go.Scatter(x=df.index, y=df[f'RS {ticker_ref}'], mode='lines', name=si.get_name(ticker_ref), line=dict(dash='dash', color='gray')), rs_row), # Volume subplot (go.Bar(x=df.index, y=df['Volume'], name='Volume', marker_color=vol_colors, opacity=0.5), vol_row), (go.Scatter(x=df.index, y=df[f'VMA {vma_win}'], mode='lines', name=f'VMA {vma_win}', line=dict(color='purple', width=2)), vol_row), ] for trace, row in traces: fig.add_trace(trace, row=row, col=1) # Convert datetime index to string format suitable for display df.index = df.index.strftime('%Y-%m-%d') # Update layout fig.update_layout( title=f'{symbol} - {interval} ' f'({df.index[0]} to {df.index[-1]})' f"; RS: {rs_window}", title_x=0.5, title_y=0.92, legend=dict(yanchor='bottom', y=0.01, xanchor="left", x=0.01), xaxis=dict(anchor='free'), yaxis=dict(anchor='x3', title='Price', side='right'), xaxis2=dict(anchor='free'), yaxis2=dict(title='IBD Relative Strength', side='right'), yaxis3=dict(title='Volume', side='right'), xaxis_rangeslider_visible=False, template=template, ) if hides_nontrading: futil.hide_nontrading_periods(fig, df, interval) # For Crosshair cursor futil.add_crosshair_cursor(fig) futil.add_hovermode_menu(fig) # Show the figure fig.show() # Write the figure to an HTML file out_dir = file_utils.make_dir(out_dir) fn = file_utils.gen_fn_info(symbol, interval, df.index[-1], __file__) fig.write_html(f'{out_dir}/{fn}.html')
if __name__ == '__main__': plot('TSLA', interval='1d', period='1y', template='simple_white') plot('台積電', interval='1wk', template='presentation')