Source code for vistock.plotly.pv2s

"""
Show a price-and-volume separated stock chart.

* Data from yfinance
* Plot with Plotly (for candlestick, MA, volume, volume MA)
"""
__software__ = "Price and Volume separated stock chart"
__version__ = "1.11"
__author__ = "York <york.jong@gmail.com>"
__date__ = "2023/02/02 (initial version) ~ 2024/08/20 (last revision)"

__all__ = ['plot']

import yfinance as yf
import pandas as pd
import plotly.graph_objs as go
from plotly.subplots import make_subplots

from .. import tw
from .. import file_utils
from . import fig_utils as futil
from ..utils import MarketColorStyle, decide_market_color_style


[docs] def plot(symbol='TSLA', period='1y', interval='1d', ma_nitems=(5, 10, 20, 50, 150), vma_nitems=50, market_color_style=MarketColorStyle.AUTO, template='plotly', hides_nontrading=True, out_dir='out'): """Plot a stock figure that consists of two subplots: a price subplot and a volume subplot. The price subplot includes candlesticks, moving average lines, while the volume subplot includes a volume histogram and a volume moving average line. Parameters ---------- symbol: str the stock symbol. period: str, optional the period data to download. Valid values are 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max. Default is '1y'. - d -- days - mo -- monthes - y -- years - ytd -- year to date - max -- all data interval: str, optional the interval of an OHLC item. Valid values are 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo. Default is '1d'. - m -- minutes - h -- hours - wk -- weeks - mo -- monthes Intraday data cannot extend last 60 days: - 1m - max 7 days within last 30 days - up to 90m - max 60 days - 60m, 1h - max 730 days (yes 1h is technically < 90m but this what Yahoo does) ma_nitems: sequence of int a sequence to list the number of data items to calclate moving averges. vma_nitems: int the number of data items to calculate the volume moving average. market_color_style: MarketColorStyle, optional Color style for market data visualization. Default is MarketColorStyle.AUTO. template: str, optional: The Plotly template to use for styling the chart. Defaults to 'plotly'. Available templates include: - 'plotly': Default Plotly template with interactive plots. - 'plotly_white': Light theme with a white background. - 'plotly_dark': Dark theme for the chart background. - 'ggplot2': Style similar to ggplot2 from R. - 'seaborn': Style similar to Seaborn in Python. - 'simple_white': Minimal white style with no gridlines. - 'presentation': Designed for presentations with a clean look. - 'xgridoff': Plot with x-axis gridlines turned off. - 'ygridoff': Plot with y-axis gridlines turned off. For more details on templates, refer to Plotly's official documentation. hides_nontrading: bool, optional Whether to hide non-trading periods. Default is True. out_dir: str, optional Directory to save the output HTML file. Default is 'out'. """ # Download stock data ticker = tw.as_yfinance(symbol) df = yf.Ticker(ticker).history(period=period, interval=interval) # Initialize empty plot with a marginal subplot fig = make_subplots( rows=2, cols=1, row_heights=[0.7, 0.3], #shared_xaxes=True, vertical_spacing=0.03, figure=go.Figure(layout=go.Layout(height=720)) ) #print(fig) # Plot the candlestick chart mc_style = decide_market_color_style(ticker, market_color_style) mc_colors = futil.get_candlestick_colors(mc_style) candlestick = go.Candlestick( x=df.index, open=df['Open'], high=df['High'], low=df['Low'], close=df['Close'], name='Candle', **mc_colors ) fig.add_trace(candlestick) # Add moving averages to the figure colors = ('orange', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow') for d, c in zip(ma_nitems, colors): df[f'ma{d}'] = df['Close'].rolling(window=d).mean() ma = go.Scatter(x=df.index, y=df[f'ma{d}'], name=f'MA {d}', line=dict(color=f'{c}', width=2), opacity=0.4) fig.add_trace(ma) # Add volume trace to 2nd row cl = futil.get_volume_colors(mc_style) colors = [cl['up'] if c >= o else cl['down'] for o, c in zip(df['Open'], df['Close'])] volume = go.Bar(x=df.index, y=df['Volume'], name='Volume', marker_color=colors, opacity=0.5) fig.add_trace(volume, row=2, col=1) # Add moving average volume to 2nd row df[f'vma{vma_nitems}'] = df['Volume'].rolling(window=vma_nitems).mean() vma50 = go.Scatter(x=df.index, y=df[f'vma{vma_nitems}'], name=f'VMA {vma_nitems}', line=dict(color='purple', width=2)) fig.add_trace(vma50, row=2, col=1) # Convert datetime index to string format suitable for display if interval.endswith('m') or interval.endswith('h'): df.index = df.index.strftime('%Y-%m-%d %H:%M') else: df.index = df.index.strftime('%Y-%m-%d') # Update layout fig.update_layout( title=f'{symbol} - {interval} ({df.index[0]} to {df.index[-1]})', title_x=0.5, title_y=.9, legend=dict(yanchor='top', xanchor="left", x=1.042), xaxis=dict(anchor='free'), yaxis=dict(anchor='x2', side='right', title='Price'), yaxis2=dict(anchor='x', side='right', title='Volume'), xaxis_rangeslider_visible=False, template=template, ) if hides_nontrading: futil.hide_nontrading_periods(fig, df, interval) # For Crosshair cursor futil.add_crosshair_cursor(fig) futil.add_hovermode_menu(fig) # Show the figure fig.show() # Write the figure to an HTML file out_dir = file_utils.make_dir(out_dir) fn = file_utils.gen_fn_info(symbol, interval, df.index[-1], __file__) fig.write_html(f'{out_dir}/{fn}.html')
if __name__ == '__main__': plot('TSLA')